Detailed computational result of the RCKESPP

A new approach for the resource constrained k-th shortest path problem

For the computational experiment, the well-known VRPTW instance set of Solomon [6] was used, as the previous RCESPP studies have done [1, 3, 4]. Each instance has a complete graph with 102 vertices including the origin and sink nodes. Each instance has a vehicle with capacity of 200. The instance set is classified as R, C, and RC depending on how the vertices are geographically located. The locations of the vertices are randomly distributed in Type R instances and clustered in Type C instances. In Type RC instances, some are distributed randomly whereas others are clustered. The instances are grouped depending on type as r101-r112, c101-c109, and rc101-rc108. The tightness of the time windows is the only difference among the same type instances. Vertex  in any instance has its own coordination  and prize . The travelling time from  to  was calculated as  and the travelling cost is calculated as . This paper sets  as integers from 0 to 20 to obtain a reasonable percentage of negative arcs. The integers are set as Righini and Salani [4] did. Computational tests were done on an Intel Dual core E7300 2.66GHZ 2.67GHZ PC with 4GB RAM.

To the best of our knowledge, the most recent algorithm for the RCKESPP was proposed by Shi [5]. His algorithm follows the procedure of algorithm of Lawler [2]. Thus, this paper compares the proposed algorithm with Lawler¡¯s. Tables 1 and 2 compare Lawler¡¯s and the proposed algorithms¡¯ computational times and numbers of generated states for the instances when k is 2, 5, 10, and 20. The computational time is measured in seconds. The columns headed with Gap(%) give the proposed algorithm¡¯s percentage of the improvement over Lawler¡¯s. These tables show that the proposed algorithm consistently generates fewer states and thus consumes less computational time for every instance and k value. Figures 1 and 2 show how the number of generated states and the computational time change as  increases, respectively. The figures compare Lawler¡¯s and the proposed algorithm by setting k from 1 to 20 on the instance c104. Figure 1 indicates that Lawler¡¯s algorithm generates more states as k increases, while the proposed one generates states consistently regardless of k. Figure 2 indicates that Lawler¡¯s algorithm consumes more computational time as k increases, while the proposed one consumes almost the same time regardless of k. Figures 1 and 2 have similar shapes because the computational time of the DP algorithm highly depends on the number of generated states.

Table 1. Computational result for k = 2, 5

 

k=2

k=5

Lawler

New Algorithm

Gap (%)

Lawler

New Algorithm

Gap (%)

time

states

time

states

time

states

time

states

time

states

time

states

c101

0.22

262015

0.05

51620

79.3

80.3

0.30

328115

0.05

51888

84.2

84.2

c102

1.53

1674557

0.27

292153

82.1

82.6

1.97

2238064

0.26

288195

86.6

87.1

c103

5.42

5208681

1.29

1034255

76.3

80.1

13.71

13655084

1.28

1027669

90.7

92.5

c104

14.31

11352655

3.58

2264392

75.0

80.1

24.12

20139051

3.73

2304822

84.5

88.6

c105

0.31

367544

0.06

71265

79.7

80.6

0.39

471589

0.07

71514

83.5

84.8

c106

0.41

502159

0.09

100467

78.0

80.0

0.50

611395

0.09

100752

81.7

83.5

c107

0.40

480488

0.09

97047

78.3

79.8

0.52

637315

0.09

97175

83.4

84.8

c108

0.72

877250

0.17

180971

76.8

79.4

1.47

1864824

0.16

185990

88.9

90.0

c109

1.26

1519472

0.27

309394

78.3

79.6

2.53

3177807

0.28

320461

89.0

89.9

r101

0.06

66944

0.02

20063

68.3

70.0

0.16

174187

0.02

20387

86.6

88.3

r102

11.40

3626432

2.09

938016

81.7

74.1

13.84

5065526

2.10

938592

84.8

81.5

r103

8.80

5412423

2.20

1195766

75.0

77.9

15.66

11033799

2.53

1301636

83.8

88.2

r104

35.32

11639745

17.01

4586566

51.8

60.6

40.27

22129546

8.01

3089736

80.1

86.0

r105

0.25

268513

0.06

55404

76.0

79.4

0.54

587717

0.06

55799

88.3

90.5

r106

14.28

4313228

3.49

1419126

75.5

67.1

20.98

7196699

4.43

1566986

78.9

78.2

r107

18.37

7645776

4.04

1863475

78.0

75.6

28.68

14166896

4.00

1854919

86.0

86.9

r108

22.13

10614957

4.61

2254591

79.2

78.8

28.20

16276837

10.26

3465735

63.6

78.7

r109

0.81

839422

0.18

160849

77.8

80.8

1.63

1816296

0.18

164546

88.8

90.9

r110

5.04

3185193

0.91

674064

81.9

78.8

9.06

7991178

0.92

680420

89.9

91.5

r111

36.20

6664411

3.88

1762656

89.3

73.6

38.01

11011212

3.91

1764017

89.7

84.0

r112

11.51

6618433

7.31

2714618

36.5

59.0

22.79

14307286

5.22

2278570

77.1

84.1

rc101

0.16

171470

0.04

40719

73.9

76.3

0.34

364195

0.04

40803

87.5

88.8

rc102

0.73

821774

0.17

164979

77.2

79.9

1.77

2026238

0.17

170627

90.5

91.6

rc103

2.53

2502612

0.49

454496

80.8

81.8

4.24

4720830

0.49

454972

88.6

90.4

rc104

32.02

9320068

1.86

1303477

94.2

86.0

33.66

11164378

1.57

1197120

95.3

89.3

rc105

0.43

473190

0.11

110540

74.1

76.6

0.99

1141481

0.11

110565

89.1

90.3

rc106

0.54

586291

0.14

131140

74.0

77.6

0.96

1111932

0.14

131497

85.5

88.2

rc107

1.62

1634032

0.45

402166

72.2

75.4

3.16

3363444

0.46

406271

85.6

87.9

rc108

3.15

3112749

0.82

717401

73.8

77.0

6.92

7309195

0.84

718232

87.9

90.2

 

 

Table 2. Computational result for k = 10, 20

 

k=10

k=20

Lawler

New Algorithm

Gap (%)

Lawler

New Algorithm

Gap (%)

time

states

time

states

time

states

time

states

time

states

time

states

c101

0.44

485261

0.05

52668

89.0

89.1

0.58

713966

0.05

53603

91.2

92.5

c102

2.14

2515472

0.26

289265

87.6

88.5

3.29

4018492

0.27

291578

91.9

92.7

c103

18.52

18809416

1.28

1035057

93.1

94.5

21.83

23252746

1.30

1043985

94.0

95.5

c104

52.08

47250175

3.95

2386036

92.4

95.0

83.03

80406120

3.85

2355629

95.4

97.1

c105

0.81

990708

0.07

72480

91.9

92.7

1.08

1348727

0.07

74274

93.5

94.5

c106

0.71

888745

0.09

101630

86.8

88.6

1.01

1285671

0.09

102617

90.8

92.0

c107

0.92

1138227

0.09

98226

90.4

91.4

1.42

1791060

0.09

100349

93.5

94.4

c108

2.43

3139895

0.17

188067

93.2

94.0

3.06

4017208

0.17

190044

94.4

95.3

c109

4.53

5763260

0.29

327949

93.6

94.3

6.48

8428446

0.30

334841

95.4

96.0

r101

0.20

220868

0.02

20631

88.8

90.7

0.27

308245

0.02

21113

91.5

93.2

r102

22.09

10044289

2.10

940377

90.5

90.6

28.29

14080025

2.11

943007

92.5

93.3

r103

22.69

16937684

3.46

1560465

84.8

90.8

47.52

34124077

3.42

1559880

92.8

95.4

r104

60.28

38761765

10.12

3519272

83.2

90.9

137.14

67258510

11.46

3478336

91.6

94.8

r105

0.71

804350

0.06

56411

91.3

93.0

1.29

1488830

0.07

57934

94.9

96.1

r106

32.91

11726986

4.37

1569976

86.7

86.6

53.75

20178129

5.00

1652562

90.7

91.8

r107

43.81

28328004

4.02

1857682

90.8

93.4

64.43

42059268

4.67

2029027

92.8

95.2

r108

29.41

17564810

8.30

3098793

71.8

82.4

69.22

42265459

8.29

3104067

88.0

92.7

r109

3.08

3448253

0.19

169998

93.8

95.1

5.44

6153499

0.20

175407

96.3

97.1

r110

13.43

12803914

0.91

682379

93.2

94.7

18.85

18872901

0.90

679098

95.2

96.4

r111

40.88

12806004

4.63

1932727

88.7

84.9

42.23

15719756

5.54

2116709

86.9

86.5

r112

28.63

18875159

6.01

2465366

79.0

86.9

63.61

37552120

7.27

2710032

88.6

92.8

rc101

0.60

678727

0.05

41805

92.5

93.8

0.90

1052775

0.05

42887

94.7

95.9

rc102

2.75

3145387

0.17

171178

93.7

94.6

4.41

5217034

0.18

173211

96.0

96.7

rc103

5.38

6218635

0.49

456220

90.9

92.7

7.84

9202713

0.50

467826

93.6

94.9

rc104

34.92

12895802

1.71

1242992

95.1

90.4

39.97

18859015

1.96

1340840

95.1

92.9

rc105

1.60

1863337

0.11

112238

93.0

94.0

1.81

2134700

0.12

113400

93.6

94.7

rc106

1.53

1815310

0.14

131787

90.8

92.7

1.95

2374017

0.15

133691

92.5

94.4

rc107

4.97

5621602

0.46

406742

90.8

92.8

6.57

7717624

0.46

407187

93.0

94.7

rc108

12.87

13877100

0.87

746921

93.2

94.6

22.14

24324543

0.90

756113

95.9

96.9

 

Figure 1. Trend of the number of generated states as k increases (Instance c104)

 

Figure2. Trend of the computational time as k increases (Instance c104)

 

 

 

 

 

 

Reference

1.             D. Feillet, P. Dejax, M. Gendreau and C. Gueguen, An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems, Networks 44 (2004), no. 3, 216-229.

2.             E.L. Lawler, A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem, Management Science 18 (1972), no. 7, 401-405.

3.             G. Righini and M. Salani, Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints, Discrete Optimization 3 (2006), no. 3, 255-273.

4.             ---, New dynamic programming algorithms for the resource constrained elementary shortest path problem, Networks 51 (2008), no. 3, 155-170.

5.             N. Shi, K constrained shortest path problem, IEEE Transactions on Automation Science and Engineering 7 (2010), no. 1, 15-23.

6.             M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research 35 (1987), no. 2, 254-265.